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Motivation and FPL Operator

Introduction

The Fokker-Planck-Landau (FPL) operator is an approximation of the Boltzmann
equation :

QL(f , f ) = log Λ ∇v ·
(∫

R3
|u|2

(
I −

u ⊗ u
|u|2

)(
f (v∗)∇v f (v)− f (v)(∇v f )(v∗)

)
dv∗

)
,

(1)
where log Λ is the Coulomb Logarithm (CL).

This approximation is valid in the limit where grazing collisions dominate the
collision process, which occurs due to the long range nature of the Coulomb
interaction potential.

Generally considered valid when log Λ ≈ 10–20, regime of weakly coupled
plasmas.
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Motivation and FPL Operator

Motivation

Motivation :
The CL has been derived before but it is unclear when/where to use it

Jeff Haack and Irene Gamba have worked on this previously but in a more
mathematical framework

The CL is usually assumed to be a constant but in principle a velocity dependent
CL can be derived from Boltzmann

Direct numerical comparisons between Boltzmann and FPL are difficult so it’s not
clear how much this may matter

In this talk we will use the spectral formulation of Boltzmann to find a consistent
spectral formulation of the FPL using the velocity dependent CL

Would using a velocity dependent CL change the O(1) term between Boltzmann
and FPL?

QB = logΛQL +O(1) (2)
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The Boltzmann equation

Boltzmann equation

The space homogeneous Boltzmann equation is given by

∂

∂t
f (v , t) = QB(f , f )(v , t), (3)

with
f (v , 0) = f0(v) and v ∈ R3 (4)

and

f (v , t) is a probability density function

f0(v) is the initial condition

Q(f , f ) is given by the bilinear integral form
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The Boltzmann equation

Integral Form

QB(f , f )(v , t) =

∫
R3

∫
S2
|u|σ(|u|, cos θ)

(
f (v ′∗)f (v ′)− f (v∗)f (v)

)
dΩdv∗. (5)

u = v − v∗ is the relative velocity

Ω is the scattering direction

θ is the angle between u and Ω

σ(|u|, cos θ) is the differential cross section

The elastic post collisional velocities v ′, v ′∗ are given by

v ′ = v +
1
2

(|u|Ω− u), v ′∗ = v∗ −
1
2

(|u|Ω− u). (6)
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The Boltzmann equation

Rotation of relative velocity

v∗ u

v ′∗

u’ v’

O

v

Ω

ûθ

v ′ = v +
1
2

(|u|Ω− u), v ′∗ = v∗ −
1
2

(|u|Ω− u).
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The Boltzmann equation

Weak form of the collision operator

The weak form of the collision operator :∫
R3

QB(f , f )φ(v)dv =

∫
R

f (v)f (v∗)|u|σ(|u|, cos θ)
(
φ(v ′)− φ(v)

)
dΩdv∗dv , (7)

where R = R3 × R3 × S2. If we take a test function φ(v) of the form

φ(v) = (2π)−3/2e−iζ·v ,

then we get

Q̂B(ζ) =

∫
R3

Ĝ(ξ, ζ)f̂ (ζ − ξ)f̂ (ξ)dξ. (8)

Here G(u, ζ) is defined as

G(u, ζ) = (2π)−3/2|u|
∫

S2
σ(|u|, cos θ)

(
e−i ζ2 ·(|u|Ω−u) − 1

)
dΩ, (9)
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The Boltzmann equation

The convolution weights Ĝ are given by

Ĝ(ξ, ζ) = (2π)−3/2
∫
R3
|u|e−iξ·u

∫
S2
σ(|u|, cos θ)

(
e−i ζ2 ·(|u|Ω−u) − 1

)
dΩdu. (10)

After some math...

Ĝ(ξ, ζ) = (2π)1/2
∫ ∞

0
r3
∫ π

0

∫ π

0
σ(r , cos θ) sin θ sin γJ0

(
r
∣∣∣∣ξ − ξ · ζ

|ζ|2
ζ

∣∣∣∣ sin γ
)

×
[

cos
(

r
(
ξ −

ζ

2
(1− cos θ)

)
·
ζ

|ζ|
cos γ

)
J0

(
1
2

r |ζ| sin γ sin θ
)

− cos
(

rξ ·
ζ

|ζ|
cos γ

)]
dθdγdr , (11)

where J0(x) is the Bessel function of the first kind.

The convolution weights (11) do not depend on time and can be precomputed to
high accuracy using numerical integrators
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The Boltzmann equation

With a similar weak form of the FPL operator∫
R3

QL(f , f )φ(v)dv =

∫
R3

∫
R3

log Λ f (v)f (v∗)

×
(
− 4|u|−3u · ∇φ+ |u|−1

(
I −

u ⊗ u
|u|2

)
: ∇2φ

)
dvdv∗

where : denotes the matrix double dot product and ∇2 denotes the Hessian.
We also take φ to be the Fourier basis function to get

Q̂L(ζ) = (2π)−
3
2

∫
R3
F [f (v)f (v − u)](ζ) GL(u, ζ)du. (12)

And GL(u, ζ) is given by

GL(u, ζ) = log Λ |u|−3
(

4i(u · ζ)− |u|2|ζ⊥|2
)
, (13)

where ζ⊥ = ζ − ζ·u
|u|2 u is the orthogonal component of ζ wrt u.
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Rutherford Cross Section

Rutherford Cross Section

The Rutherford cross section is given by

σ(|u|, θ) =

(
Z 2e2

8πε0m|u|2 sin2(θ/2)

)2

(14)

where

θ is the scattering angle

Z is the charge state of the particles

e is the elementary charge

ε0 is the vacuum permittivity

m is the mass of the particle

Directly using this cross section in the Boltzmann collision operator results in a
logarithmic singularity
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Rutherford Cross Section

Resolving the Singularity

The Rutherford cross section can be derived from the the scattering angle of a two
body Coulomb interaction :

θ(b, |u|) = 2 arctan

(
Z 2e2

4πε0m|u|2b

)
, (15)

where b is the impact parameter. The differential cross section is defined through

σ(|u|, θ) =
b

sin θ

∣∣∣∣ db
dθ

∣∣∣∣ . (16)

Inverting equation (15) to solve for b, calculating the derivative of b(|u|, θ) with respect
to θ, and plugging into (16) we obtain the Rutherford cross section.
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Rutherford Cross Section

Coulumb Interaction

target

v

b

λD

θ
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Rutherford Cross Section

Velocity Dependent CL

Now, we note that charged particles are screened from one another at the Debye
length λD . Thus, we cut off the impact parameter b at λD in (15), which corresponds to
an angular cutoff at

θm(|u|) = θm(λD , |u|) = 2 arctan

(
Z 2e2

4πε0m|u|2λD

)
. (17)

The differential cross section with cutoff is given by

σ(|u|, θ) =

(
Z 2e2

8πε0m|u|2 sin2(θ/2)

)2

1θ>θm(|u|). (18)

For the purposes of the analysis we rescale by the following

σθm (|u|, θ) sin θdθ = −
1

2π log(sin(θm/2))
σ(|u|, θ) sin θ1θ≥θm dθ. (19)

Previously, the cutoff was a small parameter ε which was not velocity dependent.
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Main Theorem

Theorem
Assume that fθm satisfies

|F{fθm (v)fθm (v − u)}(ζ)| ≤
A(ζ, t)

1 + |u|3+a
(20)

with A(ζ, t) uniformly bounded by k(1 + |ζ|)−3, k constant, and a > 0. Then

||Q̂L[fθm ]− Q̂B [fθm ]|| →λD→∞ 0 (21)

and the error is

||Q̂L[fθm ]− Q̂B [fθm ]|| ≤ O
(∣∣∣1− sin2(θm/2)

∣∣∣
log(sin(θm/2))

(
|ζ|2

|u|
+ |ζ|3

))
(22)
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Proof of Theorem Use Taylor expansion on the exponential term and define σ in terms
θ and φ with σ = cos θ u

|u| + sin θω, where ω ∈ S1 :

GB(u, ζ) = (2π)−3/2|u|
∫

S2
σθm (û ·Ω)

(
e−i ζ2 ·(|u|Ω−u) − 1

)
dΩ

= (2π)−3/2|u|
∫ π

0

∫ 2π

0
σθm (cos θ) sin θ

×
[

i
(

(u · ζ) sin2(θ/2)− |u||ζ⊥| sin(θ/2) cos(θ/2) sinφ
)

−
1
2

(
(u · ζ) sin2(θ/2)− |u||ζ⊥| sin(θ/2) cos(θ/2) sinφ

)2

−
ieic

6

(
(u · ζ) sin2(θ/2)− |u||ζ⊥| sin(θ/2) cos(θ/2) sinφ

)3
]

dφdθ

:= GB1 + GB2 + GB3 (23)

for some c within 0 < |c| <
∣∣∣ u·ζ

2 − |u|
ζ·Ω

2

∣∣∣.
Takeaway : Exponential term will yield 1− sin2(θ/2) term
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We split up the computation into two lemmas in the following way

GB = GB1 + GB2︸ ︷︷ ︸
GBr

1
+GBr

2
+GL

+GB3

Lemma 1 :

GBr
1

+ GBr
2
≤ O

 |u|−1|ζ|2
∣∣∣1− sin2(θm/2)

∣∣∣
|log(sin(θm/2))|

 (24)

Lemma 2 :

GB3 ≤ O

 |ζ|3
∣∣∣1− sin2(θm/2)

∣∣∣∣∣∣log(sin2(θm/2))
∣∣∣
 (25)
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Lemma 1

Lemma 1 Proof

Simplifying using trigonometric identities and applying the Fundamental Theorem of
Calculus,

GB1 + GB2 =
(2π)−3/2C1|u|−3

log(sin(θm/2))

(
4i(u · ζ)(log(sin(θm/2)) + 2(u · ζ)2(1− sin2(θm/2))

− |u|2|ζ⊥|2
(

log(sin(θm/2)) + 1− sin2(θm/2)
))

. (26)

Rearranging and recalling the weight function for the Landau operator,
GL(u, ζ) = |u|−3

(
4i(u · ζ)− |u|2|ζ⊥|2

)
, we have

GB1 + GB2 = GL(u, ζ) +
(2π)−3/2C1|u|−3 (2(u · ζ)2 − |u|2|ζ⊥|2

) (
1− sin2(θm/2)

)
log(sin(θm/2))

= GL(u, ζ) +
(2π)−3/2C1|u|−1|ζ|2

(
2 cos2 α− sin2 α

)(
1− sin2(θm/2)

)
log(sin(θm/2)).

(27)
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Lemma 1

To clean up this calculation, let us define GBr
1

and GBr
2

as the leftover terms on the
RHS of (27) and then taking the norm we obtain,

∣∣∣GBr
1

+ GBr
2

∣∣∣ ≤ (2π)−3/2C1|u|−1|ζ|2
∣∣∣2 cos2 α− sin2 α

∣∣∣ ∣∣∣1− sin2(θm/2)
∣∣∣

|log(sin(θm/2))|

≤
2(2π)−3/2C1|u|−1|ζ|2

∣∣∣1− sin2(θm/2)
∣∣∣

|log(sin(θm/2))|
(28)

Thus we have

GB1 + GB2 ≤ GL(u, ζ) +O

 |u|−1|ζ|2
∣∣∣1− sin2(θm/2)

∣∣∣
|log(sin(θm/2))|

 (29)

�
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Lemma 2

Lemma 2 Proof

Using trigonometric identities and integrating over φ we have,

GB3 =
i(2π)−3/2|ζ|3|u|4

12 log(sin(θm/2))

∫ π

θm

σ(cos θ) sin θeic sin4(θ/2) cosα

×
(

2 cos2 α sin2(θ/2) + 3 sin2 α cos2(θ/2)

)
dθ (30)

Taking the norm we have and using the variable change x = sin(θ/2) we obtain,

|GB3 | ≤
5(2π)−3/2|ζ|3|u|4

12| log(sin(θm/2))|

∫ π

θm

σ(cos θ) sin θ sin4(θ/2)dx

=
5(2π)−3/2C1|ζ|3

12| log(sin(θm/2))|

∫ 1

sin(θm)
xdx

=
5(2π)−3/2C1|ζ|3|1− sin2(θm/2)|

12| log(sin(θm/2))|
(31)

Thus, we have a control on GB3 ,

GB3 ≤ O

 |ζ|3
∣∣∣1− sin2(θm/2)

∣∣∣
| log(sin2(θm/2))|

 (32)

�
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Lemma 2

We can condense the above weights to

G̃(u, ζ) := GB(u, ζ)− GL(u, ζ) (33)

= GBr
1
(u, ζ) + GBr

2
(u, ζ) + GB3 (u, ζ).

Thus, one obtains,

Q̂B [fθm ](ζ)− Q̂L[fθm ](ζ) =

∫
R3
F{fθm (v)fθm (v − u)}(ζ)G̃(u, ζ)du. (34)

Putting together (24) and (25), we obtain the final estimate∣∣∣Q̂B [fθm ](ζ)− Q̂L[fθm ]
∣∣∣ ≤∣∣∣∣∣

∫
R3
F{fθm (v)fθm (v − u)}O

(∣∣∣1− sin2(θm/2)
∣∣∣

| log(sin(θm/2))|

(
|ζ|2

|u|
+ |ζ|3

))
du

∣∣∣∣∣ (35)
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Lemma 2

Recalling the definition of θm

θm(|u|) = θm(λD , |u|) = 2 arctan

(
Z 2e2

4πε0m|u|2λD

)
, (36)

and letting r = |u|, then the estimate becomes∣∣∣Q̂B [fθm ](ζ)− Q̂L[fθm ]
∣∣∣ ≤

∫ ∞
0

√
2(1 + |ζ|)−3

(1 + r3+a)

1

log
(

1 +
r4λ2

D
C2

1

)
 1

1 +
C2

1
r4λ2

D

(|ζ|2r + |ζ|3r2
)

dr (37)

Note that as r → 0, the integrand is finite.
Similarly, when r →∞, the integrand is finite.

Finally taking the limit as λD →∞, then the we have shown that the Landau operator
QL and the Boltzmann operator QB converges to zero in the L∞ difference.
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Future Work

Work on implementing these results in the numerical code

Consistent comparison of Boltzmann and FPL operator with velocity dependent
Coulomb logarithm

Derive the next order correction for FPL using spectral method
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